

Chemistry Standard level Paper 1

Wednesday 8 November 2017 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

	18	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.90	54 Xe 131.29	86 Rn (222)	118 Uuo (294)		
	17	L	9 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210) (117 Uus (294) (71 Lu 174.97	103 Lr (262)
	16		8 16.00	16 S 32.07	34 Se 78.96	52 Te 127.60	84 Po (209)	116 Uuh (293)	70 Yb 173.05	102 No (259)
	15		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.76	83 Bi 208.98	115 Uup (288)	69 Tm 168.93	101 Md (258)
	14		6 c 12.01	14 Si 28.09	32 Ge 72.63	50 Sn 118.71	82 Pb 207.2	114 Uug (289)	68 Er 167.26	100 Fm (257)
	13		5 B 10.81	13 AI 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.38	113 Unt (286)	67 Ho 164.93	99 Es (252)
	12				30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)	66 Dy 162.50	98 Cf (251)
able	11				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (281)	65 Tb 158.93	97 BK (247)
The Periodic Table	10				28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	110 Ds (281)	64 Gd 157.25	96 Cm (247)
Perio	6				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt (278)	63 Eu 151.96	95 Am (243)
The	ø				26 Fe 55.85	44 Ru 101.07	76 Os 190.23	108 Hs (269)	62 Sm 150.36	94 Pu (244)
	7	-			25 Mn 54.94	43 Tc (98)	75 Re 186.21	107 Bh (270)	61 Pm (145)	93 Np (237)
	9	er	mass		24 Cr 52.00	42 Mo 95.96	74 V 183.84	106 Sg (269)	60 Nd 144.24	92 U 238.03
	ŝ	Atômic number Element	Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (268)	59 Pr 140.91	91 Pa 231.04
	4	Atč			22 Ti 47.87	40 Zr 91.22	72 Hf 178.49	104 Rf (267)	58 Ce 140.12	90 Th 232.04
	ო				21 Sc 44.96	39 ⊀ 88.91	57† La 138.91	89‡ Ac (227)	+	+
	7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.33	88 Ra (226)		
	~	۲ н 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		
		-	2	n	4	Ŋ	Q	~		

- **1.** How many atoms of nitrogen are there in 0.50 mol of $(NH_4)_2CO_3$?
 - A. 1
 - B. 2
 - C. 3.01×10^{23}
 - $D. \qquad 6.02\times 10^{23}$
- 2. What is the value of **x** when 32.2g of Na₂SO₄ **x**H₂O are heated leaving 14.2g of anhydrous Na₂SO₄? $M_r(H_2O) = 18$; $M_r(Na_2SO_4) = 142$.

$$Na_2SO_4 \cdot \mathbf{x}H_2O(s) \rightarrow Na_2SO_4(s) + \mathbf{x}H_2O(g)$$

- A. 0.1
- B. 1
- C. 5
- D. 10
- 3. How many grams of sodium azide, NaN₃, are needed to produce 68.1 dm³ of N₂(g) at STP? Molar volume at STP = 22.7 dm³ mol⁻¹; M_r (NaN₃) = 65.0

 $2NaN_3(s) \rightarrow 3N_2(g) + 2Na(s)$

- A. 32.5
- B. 65.0
- C. 130.0
- D. 195.0
- **4.** What is the sum of the coefficients when the following equation is balanced using the smallest whole numbers?

 $\underline{C}_{6}H_{12}O_{6}(aq) \rightarrow \underline{C}_{2}H_{5}OH(aq) + \underline{C}O_{2}(g)$

- A. 4
- B. 5
- C. 9
- D. 10

	Protons	Neutrons
A.	53	78
В.	53	131
C.	78	53
D.	131	53

5. What is the number of protons and the number of neutrons in 131 I?

- 6. Which is the electron configuration of a chromium atom in the ground state?
 - A. [Ne]3s²3p⁶4s¹3d⁴
 - B. [Ar]3d³
 - C. $1s^22s^22p^63s^23p^64s^23d^4$
 - D. [Ar]4s¹3d⁵
- 7. Which trends are correct across period 3 (from Na to Cl)?
 - I. Atomic radius decreases
 - II. Melting point increases
 - III. First ionization energy increases
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 8. Which oxide dissolves in water to give a solution with a pH below 7?
 - A. MgO
 - B. Li₂O
 - C. CaO
 - D. P₄O₁₀
- 9. The electronegativity values of four elements are given.

С	Ν	0	F
2.6	3.0	3.4	4.0

What is the order of increasing polarity of the bonds in the following compounds?

- A. $CO < OF_2 < NO < CF_4$
- $\mathsf{B}. \qquad \mathsf{CF}_4 < \mathsf{CO} < \mathsf{OF}_2 < \mathsf{NO}$
- C. $NO < OF_2 < CO < CF_4$
- $\mathsf{D}. \qquad \mathsf{CF}_4 < \mathsf{NO} < \mathsf{OF}_2 < \mathsf{CO}$
- 10. Which compound has the shortest C–N bond?
 - A. CH_3NH_2
 - B. $(CH_3)_3CNH_2$
 - C. CH₃CN
 - D. CH₃CHNH

- 11. Which of the following series shows increasing hydrogen bonding with water?
 - A. Propane < propanal < propanol < propanoic acid
 - B. Propane < propanol < propanal < propanoic acid
 - C. Propanal < propane < propanoic acid < propanol
 - D. Propanoic acid < propanol < propanal < propane
- **12.** Which statements are correct for metals?
 - I. They conduct electricity because they have free moving ions.
 - II. They consist of a close-packed lattice of positive ions with delocalized electrons.
 - III. They are malleable because the layers of positive ions can slide over each other.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **13.** Which statement is correct for this reaction?

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$ $\Delta H = -26.6 \text{ kJ}$

- A. 13.3 kJ are released for every mole of Fe produced.
- B. 26.6 kJ are absorbed for every mole of Fe produced.
- C. 53.2 kJ are released for every mole of Fe produced.
- D. 26.6 kJ are released for every mole of Fe produced.

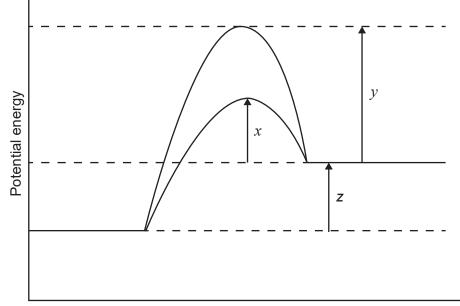
14. The enthalpy changes for two reactions are given.

$$Br_{2}(l) + F_{2}(g) \rightarrow 2BrF(g) \qquad \Delta H = x kJ$$

$$Br_{2}(l) + 3F_{2}(g) \rightarrow 2BrF_{3}(g) \qquad \Delta H = y kJ$$

What is the enthalpy change for the following reaction?

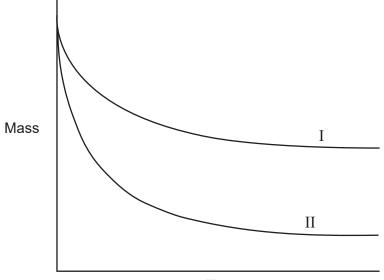
$$BrF(g) + F_2(g) \rightarrow BrF_3(g)$$


- A. x y
- B. -x + y
- C. $\frac{1}{2}(-x+y)$
- D. $\frac{1}{2}(x-y)$
- **15.** What is the enthalpy change, in kJ, of the following reaction?

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

Bond	Bond enthalpy / kJ mol ⁻¹
N=N	945
H–H	436
N–H	391

- A. $(6 \times 391) [(3 \times 436) + 945]$
- B. $(3 \times 391) (436 + 945)$
- C. $-[(3 \times 436) + 945] + (3 \times 391)$
- D. $-(6 \times 391) + [(3 \times 436) + 945]$


16. The diagram shows the energy profile for a catalysed and uncatalysed reaction. Which represents the enthalpy change, ΔH , and the activation energy, E_{a} , for the **catalysed** reaction?

Reaction coordinate

	ΔH	<i>E</i> _a (catalysed reaction)
A.	Ζ	x + z
В.	Z	z + y
C.	Z	x
D.	z + x	x

17. Excess magnesium powder was added to a beaker containing hydrochloric acid, HCl (aq). The mass of the beaker and its contents was recorded and plotted against time (line I).

Which change could give line II?

- A. Doubling the mass of powdered Mg
- B. Using the same mass of Mg ribbon
- C. Increasing the temperature
- D. Using the same volume of more concentrated HCl
- 18. What will happen if the pressure is increased in the following reaction mixture at equilibrium?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. The equilibrium will shift to the right and pH will decrease.
- B. The equilibrium will shift to the right and pH will increase.
- C. The equilibrium will shift to the left and pH will increase.
- D. The equilibrium will shift to the left and pH will decrease.

- **19.** 10.0 cm^3 of an aqueous solution of sodium hydroxide of pH = 10 is mixed with 990.0 cm³ of distilled water. What is the pH of the resulting solution?
 - A. 8
 - B. 9
 - C. 11
 - D. 12
- **20.** Which statement is **incorrect** for a 0.10 mol dm^{-3} HCOOH solution?
 - A. pH = 1
 - B. $[H^+] << 0.10 \, \text{mol} \, \text{dm}^{-3}$
 - C. $[HCOO^{-}]$ is approximately equal to $[H^{+}]$
 - D. HCOOH is partially ionized
- **21.** What are the oxidation states of chromium in $(NH_4)_2Cr_2O_7(s)$ and $Cr_2O_3(s)$?

	$(NH_4)_2Cr_2O_7(s)$	Cr ₂ O ₃ (s)
A.	+7	+3
В.	+6	+3
C.	+6	+6
D.	+7	+6

- 22. Which of the following is a redox reaction?
 - A. $3Mg(s) + 2AlCl_3(aq) \rightarrow 2Al(s) + 3MgCl_2(aq)$
 - B. $SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(l)$
 - $C. \quad \mathsf{KCl}\,(\mathsf{aq}) + \mathsf{AgNO}_3(\mathsf{aq}) \to \mathsf{AgCl}\,(\mathsf{s}) + \mathsf{KNO}_3(\mathsf{aq})$
 - D. $2NaHCO_3(aq) \rightarrow Na_2CO_3(aq) + CO_2(g) + H_2O(l)$

23. What is the reaction type and major product at the **anode** (positive electrode) when molten sodium chloride is electrolysed using platinum electrodes?

	Reaction type	Product
A.	reduction	Cl ₂
В.	oxidation	Cl ₂
C.	reduction	Na
D.	oxidation	Na

- 24. What is the major product of the reaction between HCl and but-2-ene?
 - A. 1,2-dichlorobutane
 - B. 2,3-dichlorobutane
 - C. 1-chlorobutane
 - D. 2-chlorobutane
- **25.** Which compound can be oxidized when heated with an acidified solution of potassium dichromate(VI)?
 - A. $CH_3C(O)CH_2CH_3$
 - B. CH₃CH₂CH(OH)CH₃
 - C. (CH₃)₃COH
 - D. $CH_3(CH_2)_2COOH$

- 26. What is the name of this compound, using IUPAC rules?

- A. 3-methylbutan-3-ol
- B. 2-ethylpropan-2-ol
- C. 2-methylbutan-2-ol
- D. 3-methylbutan-2-ol
- 27. Which type of reaction occurs between an alcohol and a carboxylic acid?
 - A. Addition
 - B. Oxidation
 - C. Esterification
 - D. Polymerization
- **28.** How many structural isomers of C_6H_{14} exist?
 - A. 4
 - B. 5
 - C. 6
 - D. 7

29. What information is provided by ¹HNMR, MS and IR for an organic compound?

- I. ¹HNMR: chemical environment(s) of protons
- II. MS: fragmentation pattern
- III. IR: types of functional group
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **30.** A student performs an acid-base titration using a pH meter, but forgets to calibrate it. Which type of error will occur and how will it affect the quality of the measurements?
 - A. Random error and lower precision
 - B. Systematic error and lower accuracy
 - C. Systematic error and lower precision
 - D. Random error and lower accuracy